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Abstract: Laser microbeam techniques are presented, which permit the introduction of
molecules or small particles into living cells. Possible mechanisms — including
photochemical, photothermal and opto-mechanical interactions (ablations) — are induced by
continuous wave (cw) or pulsed lasers of different wavelength, power, and mode of operation.
Laser-assisted optoporation permits the uptake of fluorescent dyes as well as DNA plasmids
for cell transfection, and, in addition to its broad application to cultivated cells, may have
some clinical potential.
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1. Introduction

Shortly after the invention of the laser by Theodore Maiman in 1960 scientists applied its
light focusing properties to biological systems, e.g. living cells and tissues [1]. Numerous
applications of the laser microbeam technique — including selective illumination of cell
compartments or organelles, structural and functional studies, optical trapping and
manipulation or microdissection — have been reported and summarized, e.g. in [2—4]. While
laser microbeams are often used for measurement or imaging of biological parameters as well
as for trapping or moving of cells in an optical tweezer system, the present mini-review is
focused on micromanipulation or microdissection techniques for introducing molecules or
small particles into a cell. Such techniques offer an alternative to injection via micro-needles,
as summarized in [5,6], and appear promising where the mechanisms involved are reversible
and where cell viability can be maintained.

Often molecules or small vesicles are taken up by cells due to passive diffusion through
the cell membrane or by endocytosis. Another possibility is active pumping of metabolites
through membrane proteins. If, however, none these mechanisms work, laser microscopy
techniques may support the uptake, e.g. of membrane impermeable fluorescent dyes or DNA
plasmids. In the latter case genes of a foreign organism can be introduced into a native
genome in order to modify the functional or fluorescent properties of a cell. This process is
called transfection and represents a main application of laser-assisted optoporation. The
mechanisms involved include photochemical, photothermal and opto-mechanical interactions
(ablations), as described in the following section.

2. Mechanisms

Interaction of laser radiation with cells or tissues may vary depending on the wavelength of
irradiation as well as on the light exposure. Fairly low light doses, around 100 J/cm? in the
visible or near ultraviolet spectral range, can induce photochemical interactions [7]. These
doses increase considerably in the near infrared range, and if instead of whole cells only small
areas around 1 pm? are irradiated, light doses up to some hundred MJ/cm® can be applied
without photochemical cell damage [8]. Photochemical interactions are related to absorption
by endogenous molecules with photosensitizing properties, e.g. nicotinamide adenine
dinucleotide (NADH), flavins or porphyrins at wavelengths below 650 nm. In the near
infrared range, photochemical damage is lower, however two-photon absorption by
endogenous molecules and (one-photon) absorption by water should be considered as dose-

#363181 https://doi.org/10.1364/BOE.10.002883
Journal © 2019 Received 25 Mar 2019; revised 9 May 2019; accepted 10 May 2019; published 17 May 2019


https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.002883&amp;domain=pdf&amp;date_stamp=2019-05-17

Vol. 10, No. 6 | 1 Jun 2019 | BIOMEDICAL OPTICS EXPRESS 2884 |
Biomedical Optics EXPRESS

limiting factors (measured according to the reduction in cell cloning efficiency [9,10]). Often
photochemical reactions are irreversible and used for photochemical internalization or
photodynamic therapy, e.g. in the treatment of cancer. Only in individual cases can they also
be used for optoporation without risk of lethal damage [11,12], e.g. in the case of gene
transfection or gene therapy.

Often laser-assisted optoporation is associated with photothermal interactions, which in a
certain range of light dosage have proven to be reversible. This is demonstrated in Fig. 1,
where small spots of 1.0 pm diameter were irradiated with a cw argon ion laser at 488 nm and
a light dose of 2.5 MJ/cm® (applied for 2.5 s). After irradiation, tiny black spots — often
surrounded by interference rings (marked by an arrow) — could be seen, however these
disappeared within about five minutes [13,14]. At higher light exposure (= 5 MJ/cm?),
permanent changes of morphology were observed, and this was concomitant with lethal
damages, as evidenced by a colony formation assay [14].

a b

Fig. 1. CHO cells (a) during laser irradiation (phase contrast) and (b) after irradiation
(interference contrast) (488nm; 1 MW/cm?; 2.5 s; image size: 100 x 100 pum?). The arrow
marks the irradiated spot. Cells were kept in F-10 HAM medium with an increased amount of
light absorbing phenol red (40 uM). Reproduced from Ref. 14 with modifications.

An explanation for the transient changes observed in Fig. 1 was given in [14]: by using a
temperature-sensitive fluorescent membrane marker, an increase in temperature from about
35°C to 41°C was observed. In this temperature range, a phase transition of membrane lipids
from a rather rigid gel phase to a more fluid liquid crystalline phase occurs [15], which may
explain why certain molecules are taken up by cells more easily. After addition of a Green
Fluorescent Protein (GFP) encoding plasmid DNA to the cultivation medium, the transfection
rate of Chinese Hamster Ovary (CHO) cells (visualized by their green fluorescence) was
increased from about 5% to 15-30% due to laser-assisted optoporation [14]. Upon application
of cw lasers cell transfection was further observed in [11,13,16], and upon use of a laser
scanning microscope specific cell types could be selected from a larger cell collective for
transfection [16]. In further investigations, composite nanoshells [17] or magnetic carbon
nanoparticles [18] were used as absorbers to create an appropriate heat profile for
optoporation.

While cw lasers induced mainly thermal interactions, short-pulse (picosecond or
femtosecond) lasers applied only a few years later induced local ablation and transient
opening of cell membranes, so that exogenous material and even macromolecules could be
introduced into living cells without photo-destructive effects. High repetition pulses from a
mode-locked laser [19] or single near-infrared laser pulses were applied for this purpose [20].
In [21] cell viability and transfection efficiency were determined after application of millions
of low-energy pulses as well as two higher-energy pulses. The data showed that pore size was
the key factor in cell viability, independent of the laser irradiation regime. An important step
towards automation was the introduction of a continuous flow system, offering the prospect
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of high-throughput optoporation [22]. Reducing the laser pulse duration down to 25
femtoseconds increased the optoporation rate, thus confirming the importance of multiphoton
effects for this mechanism [23]. Use of femtosecond lasers in combination with plasmonic
gold nanoparticles further enhanced the efficiency of optoporation, since, due to an amplified
localized electromagnetic field, the membrane permeability of human melanoma cells
increased. Thus, a very high perforation rate of 70%, a transfection efficiency three times
higher than for conventional lipofection and very low toxicity (<1%) were obtained [24].

When using a nanosecond Nd:YAG laser instead of a femtosecond laser, 25—-30% of the
cells were perforated at low light doses of 50 mJ/cm® at 532 nm, or 1 J/cm® at 1064 nm [25].
Targeting of diseased cells with functionalized gold nanoparticles contributed to an even
more selective treatment of these cells [26]. It should be emphasized that upon application of
femtosecond laser pulses, in addition to ablation, plasmonic photoionization [27] as well as
thermal effects have also been described. A comparison of high repetition infrared laser
pulses (1.55 um) with cw laser irradiation of the same wavelength and average power showed
that in the first case a temperature gradient was generated which was more favorable to
permeabilization of cell membranes [28].

3. Applications

For staining cells or organelles with fluorescent dyes, their passive diffusion through the cell
membrane or uptake via specific carrier systems, e.g. micelles or liposomes, is commonly
used. However, cell membranes are impermeable to certain actin-staining dyes, e.g.
rhodamine phalloidin [29]. In this case, laser-assisted optoporation supports the cellular
uptake of these dyes, permitting visualization of the cytoskeleton. Laser-assisted cell
transfection — as an alternative process to lipofection, electroporation or viral transfection (as
described e.g. in [30,31]) — probably represents the broadest field of application of laser
optoporation. Use of liposomes as a carrier system for DNA plasmids is reported to support
their delivery to the cell nucleus and increase the transfection rate [32]. It should be
mentioned that laser-assisted optoporation has often been used in combination with a laser
tweezer system, where cells or particles can be trapped and moved into the focus of a
(second) laser beam [3], for precise localization or interaction with microparticles [33-35].

A first step towards clinical application is represented by the delivery of impermeable
substances into retinal explants after ultrafast laser microbeam-assisted injection [36]. Further
work by the same group includes optoporation of impermeable molecules to functional
cortical neurons, leading to visualization of the actin network in the growth cone, as well as
delivery of impermeable molecules into targeted retinal cells in a rat’s eye. This may improve
visualization of the structure and function of the retina [37]. In vivo optoporation of retinal
ganglion cells (RGCs) targeted with functionalized gold nanoparticles was used to label these
cells specifically with fluorescent conjugates. This provides a novel approach to selectively
targeting retinal cells in diseased regions while sparing neighboring healthy areas [38].
Furthermore, local ablation and injury to individual cells by a laser microbeam was used to
study the calcium metabolism around epithelial wounds. Calcium influx was measured in two
steps: first to the damaged cell and about 45 s later to adjacent cells, which may also have
been damaged by a cavitation bubble. This demonstrated that multiple mechanisms may
accompany the process of optoporation [39].

A laser microdissection and pressure catapulting technique (LMPC) has been developed
[40] for the characterization of single cells and their diverse biomolecules. With LMPC, the
force of focused laser light is utilized to excise selected cells or large tissue areas from object
slides down to individual single cells and subcellular components like organelles or
chromosomes. After microdissection, the sample is directly catapulted into an appropriate
recipient vial. As this process works entirely without mechanical contact, it enables pure
sample retrieval from a morphologically defined origin. LMPC has been successfully applied
to isolate and catapult cells from histological tissue sections, from forensic material as well as
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from tough plant matter. Combining LMPC with microinjection to inject drugs or genetic
material into individual cells and capture them for molecular analysis holds great promise for
the provision of efficient customized patient medication. The principles and further
applications of this technique have been described and summarized more recently in [41,42].

4. Conclusion

The diverse mechanisms and applications of laser-assisted optoporation, as depicted
graphically in Fig. 2 are still not fully understood. They can be induced by one- or multi-
photon absorption of focused laser light and are sensitive to the wavelength, power and mode
of operation (cw or pulses of variable duration and repetition rate). In all cases, the impact of
the light dose should be examined carefully, so that transient perforation is induced and lethal
damage avoided. Usually laser optoporation of a larger cell collective occurs sequentially, e.g.
in a laser scanning microscope or a microfluidic system. However, simultaneous optoporation
by a two- or even three-dimensional pattern of laser spots, as reported e.g. for holographic
laser tweezers [43] or for a holographic photolysis system [44], might increase the speed of
cellular uptake of metabolites or cell transfection in the future.

Ablation
Photothermal

Photochemical
fs ns cw

Pulse duration

Fig. 2. Mechanisms causing laser-assisted optoporation (full lines: predominant range; broken
lines: possible range).
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